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We obtain analytic results for the stationary probability distribution in the vicinity of a stable limit cy-
cle for Markov systems described by a Fokker-Planck equation or a birth-death master equation. The
results apply best for ranges of parameters removed from Hopf bifurcation points. As a by-product, we
demonstrate that there holds a Liouville-like theorem for the stationary probability distribution: the
product of the velocity along the limit cycle times the area of the cross section of the probability distri-
bution transverse to the cycle is a constant. A numerical simulation of a chemical model system with a
limit cycle shows good agreement with the analytic results.

PACS number(s): 05.40.+j

I. INTRODUCTION

The time evolution of the averages in physical and
chemical oscillatory systems is described by deterministic
equations which, for homogeneous (spatially uniform)
systems, are usually ordinary differential equations. The
stochastic approach considers fluctuations from the mac-
roscopic averages (of concentrations, or other state vari-
ables), and a probability distribution is defined which
satisfies stochastic equations of one or another form. An-
alytic solutions for time-dependent probability distribu-
tions, which describe the relaxation either to a stationary
or a nonstationary attractor such as a limit cycle, are
hardly available. For systems with detailed balance, in
particular for some one-variable systems that possess sin-
gle or multiple stationary states, an analytic solution is
known for the time-independent stationary probability
distribution.

In this paper, we present an approximate analytic solu-
tion for the stationary probability distribution density for
a system with a stable limit cycle. We assume that this
probability density satisfies a Fokker-Planck equation
with state-dependent probability diffusion coefficients.
The stochastic analysis of chemical systems is usually
based on master equations describing birth-death process-
es; in the thermodynamic limit of fluctuations small com-
pared to macroscopic averages (of the order of the square
root of the reciprocal size of the system) such master
equations can be transformed to Fokker-Planck equa-
tions. We obtain an approximate analytic solution in the
vicinity of the limit cycle by using transformation of vari-
ables; illustrate the use of the general expressions with a
specific example, a two-variable Selkov model with a lim-
it cycle; and compare the results of the analytic solution
to numerical calculations. The analytic solution agrees
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well with the numerical results.

Former analytic work on the probability distribution of
the fluctuations in systems with limit cycles was focused
primarily on the cases where the equations of motion
were in normal form, so that the radial motion is separ-
able from the angular motion and the angular velocity is
independent of the angle. The first results have been ob-
tained in the middle 1950s [1] in the context of fluctua-
tions in radio frequency generators. A detailed analysis
of the problem was done later on in the context of fluc-
tuations in lasers (see [2—4] and references therein) and
also in the context of limit cycles in chemical systems
near bifurcation point (see [5—-8] and references therein).
The probability density distribution is of the shape of a
circular or nearly circular crater, with the ridge of the
crater corresponding to the deterministic trajectory of
the limit cycle. The fact that a system is close to a Hopf
bifurcation point makes it reasonable not only to use the
normal form but also to assume that the “stiffness” of the
system in the radial direction is small; hence the motion
in this direction is slow compared to the motion along the
limit cycle and the fluctuations are comparatively large.
The corrections to the probability density distribution
due to the angular velocity of the rotation being weakly
dependent on the radius and on the angle were con-
sidered in Ref. [9] (see also Ref. [10] where a systematic
approach is suggested to the analysis of the form of the
probability distribution near Hopf bifurcation points).

For a fully developed limit cycle the motion towards
and along the limit cycle are not separable, which makes
analysis more complicated. There are some numerical
simulations of the probability distribution of fluctuations
(as described by a master equation or a Fokker-Planck
equation) of systems with a limit cycle far from a Hopf
bifurcation point [7,11,12]. All these numerical simula-
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tions confirmed that there exists a stable stationary prob-
ability distribution for such system, and this distribution
is crater shaped, with the uneven ridge of the crater being
the deterministic limit cycle.

The analysis of the present paper applied to limit cy-
cles far from a bifurcation point; it is restricted to small
fluctuations from the attractor-limit cycle, where the
shape of the distribution in the directions transverse to
the limit cycle is Gaussian. In Sec. II, we give the general
formulation and approximate analytic solution for the
stationary probability density distribution of a Markov
system with a stable limit cycle. As a by-product of our
theory, we prove a theorem which states that the product
of the on-cycle velocity times the area of the cross section
of the probability density is constant along the limit cy-
cle. In Sec. III, the general theory is specified and ap-
plied to a simple two-variable chemical system. We com-
pare our analytic results with numerical simulations and
summarize our results in Sec. IV.

II. GENERAL CASE

A. Deterministic equations

Consider an autonomous dynamical system, in which
x; represents the concentration of a chemical species i
(i=1,...,N) or other state variable; the dynamic equa-
tions are of the form

dx;

7 - Ai(x TR
and we suppose that a solution exists which is a stable
limit cycle. We choose now another set of variables

,xy) (N>2) 2.1)

(€1, .. .,Ey) and the transformation between the set
(xy,...,xp) and the set (§,...,&y) is given by
B, = (2.2)
ij aé.j .

We impose the requirement that the coordinates
(&1, . . .,&y) are perpendicular to each other, which we
can achieve with the orthogonal unitary transformation
matrix
> ByBy =95 . (2.3)
k

The dynamic equations, Eq. (2.1), in terms of the &
variables are

ds;

o 2 (BT 4;=Z B4 .
J J

(2.4)

To describe the motion in the close vicinity of the limit
cycle we choose the first coordinate &, as the length along
the limit cycle in the phase space. When the system is on
the attractor, the limit cycle, the speed of the system on
the cycleis V,

dg, _ _ 237172
=V V:V(gl)—[EA,-J , (2.5)

where the A;(x) are evaluated for the values (x, ...,xy)
on the cycle and therefore depend on the &, only. It fol-
lows from Egs. (2.4) and (2.5) that, on the limit cycle,

A

(B ! )1 j = —;j“ .
This equation establishes the first row of the matrix B ~'.
Hence by using Schmitz’s procedure, we can find the ele-
ments of the matrix B ! in all other rows on the limit cy-
cle, and thus establish the local transformation from the
x coordinates to the £ coordinates, with each £ coordi-
nate perpendicular to all other £ coordinates. On the
limit cycle &, varies in time but the remaining coordi-

(2:6)

nates (&,, . . ., £y) are constant,
fiﬁi_ B,;A.,=0 ( le, i>2 2.7
pr —.2 A= on cycle, i >2) . 2.7)
j(z1
We choose the origin of the coordinates (£,,...,&y) on

the limit cycle, i.e., §,= - - - =&, =0 along the cycle.
In a close vicinity of the limit cycle, we may carry out
a Taylor expansion,

> B;A;= > BjigkiAj
i(zn k(Z2) 98y
j(z1

04,
= 2 Bji'Blk—_———gk (l 22) N (2.8)
k(z2) ax,

L(z1

where the derivatives are evaluated on the limit cycle.

The deterministic equation for the variables (£,, ..., &y)
for small |&,], ..., |&Ey| are
déi _ .
== 3 L& (22), 2.9)
dt k(z2)
where
94
(2.10)

Ly=—3% BjiBIk—_j (i22,k=2).
gl axl

The stability of the limit cycle requires that a deter-
ministic trajectory gets closer to the limit cycle after a
turn, i.e., |£ j| decreases after a turn for j >2. The conse-
quence of this stability requirement will be discussed in
the Appendix.

B. Stationary Fokker-Planck equation

For chemical limit cycles the probability distribution
of chemical species is described by a birth-death master
equation, and the time variation of the distribution is
given by

%P(X,I)=E W(X|X)P(X',t)— 3 WX'|X)P(X,t),
X' X'

(2.11)
where X=(X,, ..., Xy), X;=x;Q is the number of mole-

cules of the species i, x; is the number density, and Q the
volume of the system. Kinetic equations, whether of the
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master equation or Fokker-Planck type (see below), have
stable stationary solution for probability distributions,
even though the deterministic system may have no stable
stationary solution. Since we are interested in the sta-
tionary distribution only, we set the left-hand side of Eq.
(2.11) to be equal to zero. In the thermodynamic limit
this stationary difference equation can be approximated
by a differential one, allowing for the smallness of fluctua-
tions which are of the order of the inverse square root of
the volume of the system, 1/Q!72. The resulting equa-
tion, to Gaussian approximation, comes to a stationary
Fokker-Planck equation,
a2

2 A {(X)P(x) +12; ox,0%, D;(x)P(x)=0, (2.12)
where D,-j is the probability diffusion coefficient of the
system and is of the order of 1/Q. There are discussions
[13] about the justification of the transformation from a
time-dependent master equation to a time-dependent
Fokker-Planck equation for systems with stable limit cy-
cle. We consider only stationary distribution, and we
shall see a posteriori that the stationary solution obtained
satisfies not only the stationary Fokker-Planck equation
Eq. (2.12), but also the stationary master equation.

Fokker-Planck equations are used to describe not only

J
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chemical reactions, but also transport processes, electron-
ic circuits, lasers, Josephson junctions, etc. [14]. For a
noise driven system, the Fokker-Planck equation for the
probability density can be obtained from stochastic
differential (Langevin) equations. In this case the proba-
bility diffusion coefficients D;; are proportional to the in-
tensity of the noise and may be state dependent or state
independent, depending on the properties of the noise in
the system. We assume that the parameter Q !~ ID,-J-I is
the small parameter of the system; on application to
chemical kinetics we call Q) the volume of the system, al-
though it might also be the reciprocal noise intensity.

In the thermodynamic limit Q— o, the amplitudes of
the fluctuations away from the attractor are small, and
hence transforming into £ coordinate, we may write the
first term in Eq. (2.12) as

)

ox

xX) |PE&+v-2pe)

—A (x)P(x)=
2 x)=3 3,

— Ly—P 2.13

2 ExLix a§, (&) . (2.13)
The second term in Eq. (2.12) can be transformed in the
similar way. Hence the stationary Fokker-Planck equa-
tion in the vicinity of the limit cycle reads

d — — 32

— (X)) |P(E)—V—P(&)+ E Ly ——P(&E)+ (B~ Y (B™h, D, (E)P(E) (2.14)

2 Vag POt 3 Gikagg PO S (BB Ty | 5Dy

[

The stgtiona;'y .probability density distribution for a 3 ——P(£)=20Q Y mil EDP(EE,, ~ QI/ZP(g)
system with a limit cycle shows a volcano-shaped crater, a¢; m(22)
with the ridge of the crater coinciding with the deter- S
ministic trajectory of the limit cycle [1,2,7,11—13]. The (122). (217

change of the probability density along the ridge of the
- crater is smooth, and that in the direction perpendicular
to the cycle is very steep. Correspondingly, we seek a sta-
tionary solution of the form

P(E)=H(&exp (@ 3 v, (EDEE; | » (2.15)

ij(22)

where y;; =y by construction. In Eq. (2.15) we postu-
late a Gaussian distribution in a section through the at-
tractor perpendicular to the &; axis. The amplitude of
the fluctuations away from the attractor depends on ()
and is of the order of the width of the crater, i.e., of the
order of 1/Q!72, and therefore we have

3 _ 7’ij
6§1 P(E)=P(E) §

The only part in the diffusion term in Eq. (2.14) that sur-
vives in the limit Q— oo (for |&,], ..., [Ey]~Q71/?)is

D(&) P(£)=~D,(£)P(£)

ag 3E,
2 ymkém?’nlé—n

m,n (22)

X [492

+2Q']/1k ] . (2.18)

Since D;;(£) is a smooth function of the variables and the
actual ]g i ,| are very small, we can replace, within the
approximation adopted, D;;(§,,8,,...,&y) by its value
on the cycle D,] §1)=D;(£,,0, ... 0)‘ Then the station-
ary Fokker-Planck equation takes the form
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+ 3 (B—l)ki(B—l)ljﬁij(gl)P(g)

k1 (22)
ij

Equation (2.19) can be separated into two groups of or-
dinary differential equations: those equations being quad-
ratic in §; (i Z2) with only y;(£;) as unknown,

day
d§,

and the equation for the terms of zeroth power in §&;
(i 22) with both y,;(§,) and H(§,;) as unknowns,

-3 yaIH |t pr=o.
i 1

+9L+L%p+29 M p=0, (2.20)

/(x) (2.21)

Here the hat is used for matrices. The matrix L. has been
defined in Eq. (2.10), whereas the matrix Mis

My =My (§,) 292 B~ )(B l)ljBij(gl)

(k=22,122). (2.22)

The matrix M is §ymmetnca1 and positive deﬁmte,
whereas the matrix L is not, in general. Since both M
and L are defined on the cycle they are both periodic,

Lg)=L&+L), M(&)=M(&+L) (2.23)

where L is the length of the limit cycle along the variable
&y-

By multiplying Eq. (2.20) on the left and right by ¥
we arrive at a linear equation for the matrix § ~

d’\_1
d§1

The requirement of the distribution P(&;,...,&y) to be
single valued gives the boundary conditions for Egs.
(2.20), (2.21), and (2.24),

PEN=PE+L), HE)

The existence of a solution satisfying the periodic bound-
ary conditions, Eq. (2.25), for Eq. (2.24) is guaranteed by
the fact that all the coefficient matrices in Eqgs. (2.20) and
(2.21) are periodic. In the Appendix, we prove that the
matrix —7 is positive definite, which is a prerequisite for
the solution of the form Eq. (2.15) to be meaningful.
From Eq. (2.21) we can express H(£;) in terms of

Vij(gl ),

H(é‘l)_ § 1
“H(0) _fo 6y

-1

“ipt4om=o0.

+L 9y '+p (2.24)

=A(g+L) (2.25)

ox;

To(M 7)—3 {——Q—A,-(x)

(2.26)

the constant H (0) is determined by the normalization

dInH '}’ij

dé, i,j (22) dé—

+2Q 2 gkémYmiLikP(g)
ik,m (22)
Pl
40 3 Vb mibm 27y (2.19)
n,m (22)
condition
(N—1)/2
T L i
5 fO d§1|det§|ldet‘y I I/ZH(gl)zl 3 2.27)

Equations (2.15), (2.20), (2.26), and (2.27) give in explicit
form the stationary probability distribution for small fluc-
tuations from the attractor, for systems with stable limit
cycle, far from a Hopf bifurcation point.

C. A Liouville-type theorem

From numerical solutions of the stationary probability
distribution as given by a master equation or a Fokker-
Planck equation for an oscillatory system, we have ob-

served that
o(E)V(E)=const , (2.28)

where o(£;) is the area of the cross section of the crater-
shaped probability distribution at a given &;.

ol&)=[" P&, ... EN)EE - dEy,  (2.29)
and V(§&,) is the velocity along the cycle, also at £;,. As a

by-product of our approximate analytic solution, Egs.
(2.15), (2.20), and (2.26), we can prove a theorem, which
confirms our estimate from numerical solutions. From
the stationary Fokker-Planck equation, Eq. (2.14), with
consideration of Egs. (2.15) and (2.18), we have
- — V——P

2 PV P8

9 4
ox;

+ 3 &L tkagp(g

ik (22)

1
t-o 2 My

(2.30)
2Q 4Gy

ag %32 PO

We now integrate Eq. (2.30) with respect to (§,,...,&y)
over the range (— «, «) for each variable, allowing for
the fact that P(£,&,,...,Ey)—0 for |&;5,/— . The

last term in Eq. (2.30) vanishes and the third term be-
comes

2 ExLi 8§ P(§)d§2d§3"'d§N

ik (=22)
=—0(§) 3 Ly
k (=2)
o4,
olE) S —a—x—_—mgl)g—g . (2.31)
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Hence after integration, Eq. (2.30) reads

-5 |9 _p 9
0= ; ax, A;(x) |o(&)) Vaé_la(é'l)
a4, 14
+0(§1)§—a;i— 0(§1)a—§1'
=2 gV, (2.32)
d§,

that is
o(ENVIEN=V(ENH (£)(m/Q) N~ D2 |getp| 172

=const (2.33)

on the limit cycle at every value of £,. This result follows
also from the explicit form of H (&,) (2.26) with account
taken of (2.24),(2.31). It is similar to Liouville’s theorem
of conservation of phase volume of Hamiltonian systems
in classical mechanics: in the present case, the probabili-
ty flux through a cross section is conserved.

III. TWO-VARIABLE SYSTEMS

To illustrate the above analytic results for the station-
ary probability distribution in the vicinity of a limit cycle
we choose a two-variable system. The deterministic dy-
namic equations are

dx
“(#zAx(xl:xz) , (3.1)
dx
dt2 =Ay(x,%3) . 3.2

Suppose this two-variable system has a stable limit cycle
in the phase space (x,,x,). We define the new coordinate
(€1,€,) such that &, is a distance along the attractor, that
is the length of a path on the cycle, and &, is perpendicu-
lar to &;. The unitary matrix of the transformation of
variables is

dP(X,Y)
dt

k
=0k P(X—1,Y)+k(X+1)P(X +1, YH-?
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4, 2 2 4,
By v’ B,=— » By = > 322—7

2
k}_‘,l BB, =5, J . (3.3

The deterministic equations of motion for (£,,£,) are

d R

—ft—‘=V=\/A%+A§ , (3.4)
% _ 1 L=L(E)=—S BB, (5
dr &, L=L(§)= %jzzzaxl.(.)

The stationary probability density distribution of this
two-variable system, in the limit Q~'—0, is given by a
stationary Fokker-Planck equation,

82

dx;0x;

-3 %A,P(xl,xz)+z D;;P(x1,%,)=0,
i i ij

(3.6)

where the probability diffusion coefficients, D,;, are of the
order of @71, and may be state dependent or not.

As an example of a two-variable chemical system with
a stable limit cycle, we consider the Selkov model,

ky ks ks
Re2X, X+2Y=23Y, Y=P, (3.7)
2 k4 k6

where R (P) denotes reactant (product) with a fixed con-
centration, X and Y are two intermediate chemical
species, and k; are rate coefficients of the reactions. We
write x, and x, for the concentrations of species X and

Y, and then the A;s on the rhs of Egs. (3.1) and (3.2) are
A =k, +kyx3—(k,+kyx3)x, ,
(3.8)
A2=k6+k3x§x1"‘(k5+k4x%)x2 .

For our example of chemical reaction in the Selkov
model, Eq. (3.7), the stochastic description of the system,
based on birth-death master equation, takes the form

(X +1(Y—1(Y —2)P(X+1,Y—1)

k
+Q—42(Y+l)Y(Y—l)P(X—1,Y+1)+k5(Y+1)P(X,Y+1)+Qk6P(X,Y—~1)

— |Qk, + kX +— XY+ =Y +k Y +Qkg [P(X,Y),
Q Q

where X and Y are the numbers of X and Y molecules.
Since we are only interested in the stationary density
probability distribution, we set the right-hand side of this
equation equal to zero. Rescaling the variables x, =X /Q
and x,=Y /Q, we obtain the stationary Fokker-Planck
equation of the form of Eq. (3.6), with the probability
diffusion coefficients

(3.9)

Dll =$[kl +k4x%+(k2+k3x%)XI] >
1
D22=?Q-[k6+k3x§xl+(k5+k4x§)xz] s (310)

1
D12=D21 = —E(k3x1x§+k4)€g) .
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Rewriting Eq. (3.6) in terms of (£,,£,) coordinates, we
have

d
ax, A;(x) |P(&) § ——P(&)+E,L(E)P(E)
+2 B™ )5 (B™1),;D;;(8) P(§)— (3.11)
a§2
We seek the solution of Eq. (3.11), P(£), in the form
P(E)=H(&))exp[Qy(£))E3], (3.12)

where H(&,) and y(&;) are to be determined. The equa-
tion for y (&) is given by Eq. (2.20); this is

Vgg— 2L(E,)y —2M(£,)y?= (3.13)
Where L(gl) and M(§1)=20 Zi,jBiZBjZEij(gl) are

periodic functions of £;, with the length of limit cycle
ﬁd &, as the period. The solution for y(&;) periodic in &,
follows from Eq. (3.13) (cf. also Appendix),

& M(&) & L&)
—2 d& —2 T
J, ViED fg, e ]

£ L (&
2exp —2f0 d& V(jl) }
1
L(&)
1—exp |—2 deg'l V(?) ]
1
(§1 L&)
xf §1 V(§1 f g gn) ]

(3.14)
J

W{x+Q Ly) > »)}P(x+Q Ly)+W{(x—Q!
+Wi{(x,y+Q!
+Wi{x+a Ly—q!

An equivalent problem [16,17] is to trace the movement
of such a random walker in x-y space: when this walker
is at point (x,y) it can step randomly into its neighbors in
six different directions (x+1/Q,y), (x,y+1/Q), and
(x+x1/Q,y ¥1/Q) with probabilities Wi(x,y—>x*t1/
Q,y), Wx,y—x,ytl1/Q), and W(x,y—>xt1/Q,y
F1/Q), respectively. In the limit of large number of
steps, the probability of a point (x,y) being visited by the
random walker gives the solution of Eq. (4.1). The solu-
tion of a stationary Fokker-Planck equation can be found
in a similar way.

The dimensionless volume of the system which scales
the total number of particles, (, is chosen to be 50 000 in
our calculation. For this volume size, the difference be-

Since both M and [Ld&L(£)/V(E)) are positive
definite, ¥(&;) is then negative definite, as expected for
Gaussian fluctuations around a stable limit cycle. Equa-
tions (3.14), (2.26), and (2.33) define H(&,). Thus we have
an explicit approximate solution for the probability dis-
tribution of a two-variable system in the vicinity of a
stable limit cycle.

Equations (3.12) and (3.13) have much in common with
the equations for the evolution of the probability density
of a two-variable system with a limit cycle, which were
considered in the Appendix of an interesting article [15].
The authors used the transformation to the variables nor-
mal and tangential to the cycle, as is done here. Howev-
er, in the present paper, in contrast to [15], we analyze
the stationary statistical distribution, and both the prefac-
tor and the exponent in (3.12) are independent of time.
The inequality [Ed&L(£)V™'(£,)>0 implemented in
the present analysis is much less restrictive than
L(&,)V~Y&,)>0 imposed in [15].

IV. COMPARISON WITH NUMERICAL SOLUTIONS
AND CONCLUSIONS

We calculated numerically by means of a Monte-Carlo
method [16,17] the probability distribution for the Selkov
model, from both the stationary Fokker-Planck equation,
Eq. (3.6), with the probability diffusion coefficients Eq.
(3.10), and the stationary master equation. If we take a
master equation as an example, then the equation for the
stationary distribution is of the form

V)= (x,y)}P(x—Q L y)
)—(x,y)}P(x,y + Q" H+W{(x,y —Q ) —(x,9)}P(x,y — Q1)
)= (L) P(x+Q Ly —0 H+W{x—Q Ly+Q H—(x,p)}P(x—Q !
—P(x, ) (W{(x,y)—>(x+Q Ly} + W{(x,p)—>(x —Q~
+W{(x,9)—>(x,y —Q N} +W{(x,y)—>(x+Q Ly—Q " H} +W{(x,y)—

y+a™h

LN HW{xy)—(xy+07h)

(x—Q Ly+a™hH})=0

(4.1)

[
tween the results from the master equation and that from
the Fokker-Planck equation can hardly be observed at
our resolution (200X 200 grid). With the following values
of parameters: k,;=1.0, k,=0.2, k;=1.0, k,=0.1,
ks=1.105, and k4=0.1, the Selkov model has a stable
limit cycle, and the solution for the probability distribu-
tion is a volcano-shaped crater as depicted in Fig. 1, with
the top of the crater corresponding to the location of the
deterministic limit cycle. The top of the crater is uneven
and the width of the crater varies from point to point.

In Fig. 2 we plot the probability distributions in a cross
section transverse to the limit cycle obtained from nu-
merical solution for the stationary distribution of the
master equation, Eq. (4.1), and the analytic expression
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FIG. 1. Monte Carlo results for the stationary probability
distribution for the Selkov model with the shape of a volcanic
crater. The parameters are k; =1.0, k,=0.2, k;=1.0, k,=0.1,
ks=1.105, and k¢s=0.1. The system has a stable deterministic
limit cycle located on the ridge of the crater. The symbol Q
denotes the effective dimensionless volume which scales the to-
tal number of molecules, taken to be =50 000.

80000 — T T T =
700.00 - |
600.00 |~ -
500.00 (- -
400.00 |~ -

300.00 [~ At y

10 3 (PROBABILITY)

200.00 —

100.00 —

0.00 —

-200.00 -100.00 0.00 100.00 200.00
103 &

FIG. 2. The probability distributions in a cross section
(transverse to the ridge) for the Selkov model. The parameters
are the same as in Fig. 1. The on-cycle point, at which the cross
section transverse to the limit cycle is taken, is
(x,y)=(1.894787,0.6908315). (a) result of the Monte Carlo
calculation of the stationary distribution of the master equation,
Eq. (4.1); (b) analytic result from Eq. (3.12).
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Eq. (3.12). The on-cycle point, where the cut of the cross
section is taken, is (x,y)=1(1.894787,0.6908315). The
numerical solution is correct to only about 109%, mainly
due to the finite time of the Monte Carlo simulation and
the finite size of our example (of the order of 10° mole-
cules). Within that range the analytic and numerical re-
sult agree quite well. The second peak of the plot from
the Monte Carlo simulation, on the right-hand side of
Fig. 2, is the ridge on the other side of the crater; the ana-
lytic solution yields only one peak everywhere on the lim-
it cycle.

The data for H and y as given by Egs. (2.26) and (3.14)
are plotted in Fig. 3. The requirements for a crater-
shaped distribution from Eq. (3.12) that (i) both H and y
be periodic functions of &;, with the length of the limit
cycle as the period, (ii) H >0, and (iii) ¥ <0 are all
satisfied.

In order to compare the height of the crater along the
limit cycle, we plot in Fig. 4 H from Eq. (2.26) and the
height of the crater along the limit cycle from the numer-
ical simulation. We find these two curves match very
well.

The area beneath the distribution surface P(£,£,) for a
given &, is

H(EW T
vV —ayE,)

The product of o(&) times the on-cycle speed V(&) is
predicted to be constant. The curve of o(&,)V(&,) from
our analytic solution and numerical calculation in Fig. 4
supports this point.

In conclusion, we have constructed an explicit analytic
solution of a Fokker-Planck equation, with small proba-
bility diffusion coefficient, in the vicinity of stable limit
cycle. The distribution in the direction transverse to the
limit cycle is Gaussian. The width and the height of this

olg)= [ P&, 6)d8= 4.2)

1400 =T T T T T

2.00 — —

0.00 |- 4
8.00 — —
T 6.00 |- N
4.00 - .

(&)

2.00 — —

0.00 (— 4 1 | | L O

-10.00 —

03v(EW)
8
8
T

0.00 200 4.00 6.00 8.00 10.00
TIME
FIG. 3. H and v as given by Egs. (2.26) and (3.14) for the Sel-
kov model vs time within a period of motion along the limit cy-
cle. The parameters are the same as in Fig. 1. Time is related
to &, via Eq. (2.5).
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TIME

FIG. 4. Comparison of the analytic results with the numeri-
cal calculations for the Selkov model. The parameters are the
same as in Fig. 1. Curve a: x, concentration of X, vs time; b: y,
concentration of Y, vs time; curve ¢: numerical result: the
height of the probability density in the cross section along the
limit cycle with the maximum value normalized to unity; curve
d: analytic result: same as curve c¢; curve e: numerical result:
product of the area of the cross section times the velocity, which
is almost constant, with some deviations due to the overlapping
of the probability densities from two parts of the crater; curve f:
analytic result: the product of the area of the cross section
times the velocity.

distribution vary along the limit cycle. However the
product of the area of the cross section times the velocity
of the motion along the cycle remains constant. The
Monte Carlo numerical simulation for a model oscillato-
ry chemical system (Selkov model) has been performed,
and the results are in good quantitative agreement with
the theory. The result presented not only gives an analyt-
ic expression for the probability distribution near a limit
cycle, it also paves the way to the solution of the more
general problem of large fluctuations in systems without
detailed balance that possess limit cycles, and of the fluc-
tuational escape from such attractors.
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APPENDIX

The stationary solution to the Fokker-Planck equation
of the form Eq. (2.15) makes sense provided the matrix ¥
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is negative definite. It ensures that the probability distri-
bution is Gaussian in the direction transverse to the limit
cycle, with the maximum at the limit cycle. In order to
prove this, we start from Eq. (2.9). We can define an

operator U(¢)=[U,;(1)|i 22,j > 2] such that

()= 3 Uy (0) (i=2). (A1)
j(z2)
Substituting it into Eq. (2.9), we have
Ow=Texp |~ ['L(ridr|
0
= lim e LA, —Lu—anar, .. ,—L(anA: (A2)
At—0

where T is the chronological ordering operator [the ma-
trices L (7) for different instants  do not commute with
each other] and At =A¢,/V(&,). The stability of the lim-
it cycle requires that the deterministic trajectory ap-
proaches the limit cycle after a cycle; that is

S i< 3 N0, t,=[TdevTiE),  (AY)
i(22) i(22) 0
where 7, is the period of the oscillation and L is the

length of the limit cycle. Thus the absolute values of all
the eigenvalues of the matrix o (z,) must be less than 1;

that is, if a canonical transformation that diagonalizes
U(z,)is S,

($70(,)81,=u;8

then

~

S'§=T, (A4)

ij »
lu;| <1 . (AS5)

It is straightforward to show that Eq. (2.24) has a solu-
tion of the form -

P =07 1) 0T - 0wam0 T, (e
where
pn=2 ['dr 0 M@0 TD] (A7)

On application of periodic boundary conditions Eq. (2.25)
to Eq. (A6) we have the equation for the matrix 7 ~1(0),

7 710)—0(1,)7 ~HO U T(1,)=—0(1,)(,)0 '(z,) .
(A8)

To solve this equation we multiply it by S from the left-
hand side and by S from the right-hand side, and then for
the elements of the matrix,

g=—8Tp 108§, (A9)
we obtain
v uu
e, (A10)
8i l—wu}
where
»=8"n(z,)8 . (A11)

Since the matrix M(7) defined by Eq. (2.22) is symmetri-
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cal and positive definite (it is proportional to the matrix
of the probability diffusion coefficients), the matrix

O~ YrM(A[0 (]!

is Hermitian and positive definite. Hence ¥, which is ob-
tained by integration and canonical transformation upon
this matrix, is also Hermitian and positive definite.
Therefore

vi>0, vyv;—Hwv;+v;)?>0. (A12)

It follows from (A10) and (A12), with account taken of
Eq. (AS), that

8i:>0, giigjj_%(gij+gji)2>0 . (A13)
Hence the matrixAg‘ is ?ositive definite, and thus the ma-
trix 9 71(0)=—S888" is negative definite. Since the
starting point ¢t =0 on the limit cycle has been chosen ar-
bitrarily, the matrix # ~1(0) is negative definite every-
where on the cycle.
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